

<u>CYCLOLAB</u> Cyclodextrin Research & Development Laboratory Ltd. Budapest, P.O.Box 435, 1097, Illatos út 7. H-1525 Hungary Tel/Fax: 36-1-206-5136, 36-1-206-5137 E-mail: cyclolab@cyclolab.hu

CIKLODEXTRINEK ADSZORPCIÓJA KÜLÖNBÖZŐ TALAJOKON

1. Bevezetés	2
2. Anyagok és módszerek	3
Adszorpciós kísérlet	3
CD-tartalom meghatározása HPLC-vel	4
3. Eredmények	5
A talajokkal egyensúlyba hozott oldatok pH-ja	5
Ciklodextrinek adszorpciója talajokon	5
A tenzid adszorpciója a talajokon	7
A CD-féleségek oldóképességének összehasonlítása	8
4. Összefoglalás	12
Irodalom	13

1. Bevezetés

Korábbi tapasztalataink arra mutatnak, hogy a ciklodextrinek (CDk) kölcsönhatásba lépnek a talajt szennyező szénhidrogénekkel és egyéb szerves anyagokkal fokozva azok vízoldékonyságát [1] és biológiai hozzáférhetőségét [2]. Még olyan perzisztens anyagok esetén is érhető el némi javulás a biodegradáció mértékében különösen a kezelés elején, mint a poliklórozott bifenilek és a pakura [3, 4]. Leginkább a random metil βCD (RAMEB) bizonyult hatékony szolubilizálószernek, amely feltehetően nemcsak a szennyezőanyagok, hanem a talajban lévő egyéb tápanyagok biológiai hozzáférhetőségét is növeli. Ez utóbbi hatás a nem szennyezett talajokban RAMEB jelenlétében mérhető sejtszámok növekedésében nyilvánul meg [5].

Nem találtunk az irodalomban olyan összehasonlító munkát, amely több CD-féleség hatásait elemzi. Mindössze két BCD-származékot: a hidroxipropil- (HPBCD) és a random metil-BCD-t hasonlították össze. E két CD-féleség közül a RAMEB bizonyult jobb szolubilizálószernek a modell szénhidrogén vegyületként használt triklóretilén és tetraklóretilén kimosására egy repülőtérről származó mesterségesen szennyezett homokos talajból [6]. Egységnyi tömegű szolubilizálószerre vonatkoztatva a RAMEB még a vizsgált tenzideknél (nátrium-dodecil-szulfátnál, SDS és dinátrium-hexadecildifeniloxiddiszulfonátnál) is hatékonyabban oldotta ki a triklóretilént a talajból [7]. A metil-BCD a HPBCD-nél hatékonyabban segítette elő robbanóanyagok (trinitrotoluol és metabolitjai) deszorpcióját egy robbanószer-gyár területéről származó talajról [8]. Ez utóbbi munkában összehasonlították e két CD-féleség adszorpcióját egy magas (8,4%) humusz-tartalmú talajon és illit agyagásványon. Míg a HPBCD nem adszorbeálódott egyik porózus anyagon sem, a metil- β CD 1 %-os oldatából a szorbensre vonatkoztatva 1,65 mg/g kötődött meg a talajon és 7.4 mg/g az illiten. Ezek a tapasztalatok összhangban vannak azzal a korábbi megfigyeléssel, hogy a HPBCD nem adszorbeálódik kaolinit agyagásványon sem [9].

Jelen munkában célunk különféle CDk összehasonlítása volt. A kísérletekhez nem szennyezett talajokat használtunk, hogy vizsgáljuk a talajok és a CDk közötti kölcsönhatásokat, elsősorban a CDk adszorpcióját a különböző sajátságú talajokon, másrészt azt, milyen mértékben szolubilizálják a talajalkotókat az egyes CD féleségek. Vizsgálatainkba a három leggyakoribb nem szubsztituált CD-t (α -, β - és γ CD-t) és három β CD-származékot: acetil-, hidroxipropil- és random metil- β CD-t (AcBCD, HPBCD, RAMEB) vontunk be. Összehasonlításként egy ionos felületaktív anyagot (SDS-t) használtunk. Mértük a talajokkal

2

egyensúlyba hozott vizes CD oldatok maradék szárazanyag-tartalmát gravimetriásan, maradék CD-tartalmát HPLC-vel, és UV elnyelését spektrofotometriával.

2. Anyagok és módszerek

α-ciklodextrin (ACD), Lot No. 60P093W (Wacker Chemie, München),

β-ciklodextrin (BCD), Lot No. 707082 (Wacker Chemie, München),

γ-ciklodextrin (GCD), Lot No. 80P081 (Wacker Chemie, München),

acetil β -ciklodextrin (BCD), Lot No. CYL-507/16, DS \approx 7, (Cyclolab, Budapest),

hidroxipropil β -ciklodextrin (HPBCD), DS = 2,7, Lot No. 8911389 (Chinoin, Budapest),

random metil β -ciklodextrin (RAMEB), DS = 1.8 Lot No. 71B004 (Wacker Chemie, München)

nátrium-dodecil-szulfát (SDS) (Fluka)

A kísérletekben 3 féle (homok, vályog és agyag) talajt használtunk. Ezek származási helye rendre Nyírlúgos, Budai-hegység és Kisújszállás. Talajtani sajátságaikat az MTA-TAKI Talajfizikai Csoportja jellemezte (1. táblázat).

Talaj	pH _{H2O}	pH _{KCl}	EC	Humusz	Nitrogén	Foszfor	Fajlagos	Szén	Mechanikai összetétel		
típus			1:2,5	tartalom	tartalom	tartalom	felület	tartalom	homok	iszap	agyag
			mS/cm	%	g/kg	g/kg	m ² /g	mg/kg	%	%	%
Homok	5,12	4,43	0,07	0,45	1,81	0,299	8	2650	87,12	9,60	3,28
Vályog	7,30	7,12	1,38	4,18	2,10	0,462	86	26150	18,98	56,31	24,71
Agyag	7,40	6,98	0,31	3,91	1,81	0,326	135	23010	4,33	46,80	48,87

1. táblázat. A vizsgált talajok fizikai-kémiai jellemzői

Adszorpciós kísérlet

2-2 g talajhoz 10-10 ml 5mg/ml-es NaCl oldatot adtunk, amely 0-1% CD-t tartalmazott. Szobahőmérsékleten mágneses keverővel intenzíven kevertettük a szuszpenziót 1 napig, majd ülepedni hagytuk. A felülúszót papíron átszűrtük. A szűrlet pH-ját WTW pH 96 pH-mérővel, szárazanyag-tartalmát aliquot részének 3 órás 105 °C-os szárítása után gravimetriával (Scaltec SBC 22 analitikai mérleggel), UV abszorpcióját HP 8452 A típusú fotométerrel mértük meg. A CD-tartalmat HPLC módszerrel határoztuk meg.

4. melléklet

CD-tartalom meghatározása HPLC-vel

A ciklodextrinek mennyiségi mérésére kidolgozott HPLC módszer méretkizárásos kromatográfiát alkalmaz.

A ciklodextrin származékok nagy számú különböző isomer keverékei. A különböző szubsztitúciós fokú és különböző szubsztitúciós eloszlási képet mutató izomerek komponensei a használt méretkizárásos oszlopon célszerűen nem válnak el, hanem egy csúcsba komprimálódnak, így mennyiségi mérésük lehetővé válik. A nem szubsztituált ciklodextrinek természetesen szintén egy csúcsban eluálódnak.

Az adszorpciós kísérletből származó ciklodextrin tartalmú vizes mintákat szilárd fázisú extrakciós módszerrel tisztítottuk.

A szilárd fázisú extrakciós mintaelőkészítés célja volt eltávolítani a zavaró, a CD csúccsal interferáló szennyezőket, az oldóközeget megváltoztatni (viz / mozgó fázis), mivel RI detektálásnál a mintaoldó-közeg és a mozgó fázis azonossága elengedhetetlen.

A szilárd fázisú extrakcióhoz egy Vac Elut SPS 24 mintaelőkészítő egységet használtunk.

A LiChrolut^R, RP18 szilárd fázisú extrakciós oszlopot (500 mg, Part: 1.02014.0001, Merck) 3 ml metanollal majd 5 ml vízzel kondicionáltuk. Ezt követően 1 ml (maximum 2.5 mg/ml) CD tartalmú vizes mintát vittünk fel a mintaelőkészítő oszlopra, 3 ml vízzel mostuk, majd mosás után az oszlopot szárítottuk 5 percig vákuummal. A mintát 2x 1.0 ml 90%-os metanollal eluáltuk, mintabepárlóban szárazra pároltuk kb. 60 °C-on. A maradékot 1 ml mozgó fázisban feloldottuk, majd a tiszta oldatból 20 µl-t injektáltunk az oszlopra.

A mérésekhez Hewlett-Packard 1050 pumpát, Hewlett-Packard 1050 automata mintaadagolót, ERC-7515B RI detektort, Hewlett-Packard 1050 VW detektort használtunk. A kapott kromatogramokat Hewlett-Packard 1050 ChemStation, Version No: A.06.03. értékelő rendszerrel értékeltük ki.

TSK-GEL G 2000SW szilikagél alapú oszlopon (300 mm x 7.5 mm I.D., TosoHaas), TSK-GEL G SW előtét oszlop alkalmazásával (75 mm x 7.5 mm I.D., TosoHaas) mértünk. Az oszlop hőmérséklete 30 °C volt, a térfogat áramlási sebesség 1.0 ml/perc. Az RI detektor hőmérséklete: 40 °C volt (Fast mode), az UV detektorral 200 nm hullámhosszon vettük fel az ellenörző kromatogramot.

A mozgó fázis 1000 ml-e 100 ml metanolt és 900 ml vizet tartalmazott. Minden esetben 20 μl mintát injektáltunk.

A mintaelőkészítéshez és a HPLC vizsgálatokhoz használt reagensek kromatográfiás minőségűek voltak (metanol: Merck , víz: Milli-Q, Millipore).

3. Eredmények

A talajokkal egyensúlyba hozott oldatok pH-ja

A CD-oldatok pH-ja közel semleges, kivéve az enyhén savas kémhatású AcBCD-oldatot. Az SDS-oldat pH-ja még kevésbé tér el a semlegestől (2. táblázat).

A talajokkal egyensúlyba hozott oldatok pH-ját a talaj határozza meg. A savas AcBCD a homoktalaj pH-ját kissé csökkentette.

 táblázat A vizes CD- és SDS-oldatok pH-ja talaj nélkül és különböző tulajdonságú talajokkal egyensúlyban

	Kontroll	ACD	BCD	GCD	AcBCD	HPBCD	RAMEB	SDS
Talaj nélkül	5,9	5,9	5,8	6,1	4,1	5,9	5,8	7,1
Homoktalaj	5,8	5,4	5,3	6,3	4,9	5,4	5,4	5,7
Vályogtalaj	7,8	7,6	7,3	7,0	7,4	7,4	7,6	7,7
Agyagtalaj	7,4	7,7	7,5	7,7	7,6	7,7	7,8	7,4

Ciklodextrinek adszorpciója talajokon

A talajokkal egyensúlyba hozott CD-oldatok HPLC-vel mért maradék CD-tartalmából számítottuk a megkötött CD mennyiségét egységnyi tömegű talajra vonatkoztatva. A módszer reprodukálhatóságának ellenőrzésére néhány esetben 2-3 párhuzamos kísérletet végeztünk. Az eredményeket a 3. táblázatban tüntettük fel. A HPLC mérés reprodukálhatósága kevesebb, mint 10 %, az egész adszorpciós kísérleté kb. 30 %.

3. táblázat A módszer reprodukálhatőságának ellenőrzése

	Megke (párhuzam			
	1	2	3	Átlag
αCD/vályog	6,60	6,75	7,35	6,9 <u>+</u> 0,4
βCD/vályog	11,55	10,75	-	11,2 <u>+</u> 0,6
RAMEB/agyag	11,8	7,7	-	9,9 <u>+</u> 2,9

A kapott értékek jellemzik a CD-féleségek adszorpciója közötti különbséget (1. ábra).

1.ábra A CD-féleségek adszorpciója talajokon

Homoktalajon lényegesen kisebb mértékben adszorbeálódtak a CDk, mint vályog- és agyagtalajon, ami a homoktalaj kis fajlagos felületével (1. táblázat) magyarázható. A másik két talaj szorpciós képessége nem hozható egyértelmű összefüggésbe a fajlagos felületükkel: nem volt jelentős különbség a GCD, AcBCD és HPBCD esetében, ugyanakkor az ACD és különösen a RAMEB sokkal jobban kötődött az agyagtalajhoz, a BCD pedig a vályogtalajhoz. Mindhárom talajon nagyobb mértékű szorpciót mutattak a nem szubsztituált CDk, mint a származékok.

Néhány esetben felvettük a szorpciós izotermákat is. A 2. ábra az ACD és BCD izotermáit mutatja vályogtalajon, a 3. ábra a HPBCD és RAMEB izotermáit agyagtalajon.

Az α - és β CD izotermái csak a nagyobb (1%) koncentrációnál térnek el jelentősebben. A RAMEB viszont az egész koncentrációtartományban erősebben adszorbeálódik az agyagtalajhoz, mint a HPBCD, összhangban az irodalomban leírt tapasztalatokkal. Az 1. ábra homoktalajra hasonló sugall.

2. ábra α - és β CD adszorpciója vályogtalajon a CD koncentráció függvényében

3. ábra HPBCD és RAMEB adszorpciója agyagtalajon a CD koncentráció függvényében szobahőmérsékleten

A tenzid adszorpciója a talajokon

A tenzid HPLC-s meghatározására nem állt rendelkezésünkre módszer, ezért egy durva becslésként a talajokkal egyensúlyba hozott vizes oldatok szárazanyag-tartalmát mértük meg gravimetriásan, ebből levontuk a bemért komponensek súlyát, majd a bemért száraz talaj súlyára vonatkoztattuk. Az eredményeket a 4. ábrán mutatjuk be.

4. ábra A talaj súlyának számított változása

A számított súlyváltozás az adszorpciós és kioldódási folyamatok eredőjeként jött létre. A kontroll kísérletben az üres NaCl oldat esetén kioldódást észleltünk (csökkent a talajok súlya, elsősorban a vályogtalajé), a többi esetben általában nőtt a talajok súlya, különösen az SDS oldatból adszorbeált sokat a vályog és az agyagtalaj. A tenzidnek a ciklodextrinekhez képest egy nagyságrenddel nagyobb mértékű kötődése hátrányos lehet a gyakorlati alkalmazások szempontjából.

A CD-féleségek oldóképességének összehasonlítása

A talajokkal egyensúlyba hozott CD oldatok spektrumai alapján hasonlítottuk össze a kioldott UV-aktív anyagok mennyiségét. Az 5.-8. ábrák mutatják, hogyan változnak a spektrumok a CD koncentráció növelésével. Az aromás vegyületekre jellemző 250-300 nm tartományban tapasztalunk növekedést mindkét talajon, mind a 4 CD féleség esetén. Ebben a hullámhossz-tartományban már egyik CD sem abszorbeálja a fényt (9. ábra).

5. ábra Vályogtalajjal egyensúlyba hozott ACD oldatok spektrumai

6. ábra Vályogtalajjal egyensúlyba hozott BCD oldatok spektrumai

Az α - és a β CD oldóképessége között 0,1 % koncentrációnál látszik a legnagyobb különbség a spektrumok alapján. A koncentráció növekedésével ez a különbség csökken. Annál nagyobb az eltérés a HPBCD és a RAMEB oldóképessége között az utóbbi javára. Ez a megfigyelés arra mutat, hogy a CDk, különösen a RAMEB feloldja a nem szennyezett talaj UV-aktív (aromás) komponenseit, hasonlóan a szennyezett talajokban lévő szerves szennyezőanyagokhoz.

7. ábra Agyagtalajjal egyensúlyba hozott HPBCD oldatok spektrumai

8. ábra Agyagtalajjal egyensúlyba hozott RAMEB oldatok spektrumai

9. ábra 1%-os vizes CD és SDS oldatok spektruma

Összehasonlítottuk a háromféle talajjal egyensúlyba hozott 6 féle CD és az SDS vizes oldatainak spektrumait (10-12. ábra). Mindhárom talaj esetén az SDS oldatok mutatták a

legnagyobb elnyelést, homok- és vályogtalaj esetén túl is lépve a mérési tartományt. Ezért ezen oldatok 10-szeres higításainak spektrumait tüntettük fel az ábrákon.

A homoktalajban kevés humusz van, ez látszik abból is, hogy kicsi az elnyelés a 250-300 nm tartományban. Mindegyik CD-féleség oldatának spektruma a kontroll (a talajjal egyensúlyba hozott vizes NaCl oldat) spektruma felett halad. A különbség nem jelentős, a sorrend az ábráról leolvasható.

10. ábra Homoktalajjal egyensúlyba hozott CD- és SDS-oldatok spektrumai

11. ábra Vályogtalajjal egyensúlyba hozott CD- és SDS-oldatok spektrumai

A vályog- és agyagtalaj humusztartalma közel azonos (4,18 és 3,91 %), mégis a vályogtalajból több kioldódik, amit az oldatok nagyobb UV-elnyelése jelez. A CD-féleségek közötti különbség a vályogtalaj esetén nem jelentős, nagyobb az eltérés az agyagtalajjal egyensúlyba hozott oldatok között. Utóbbi esetben a CDk közül a RAMEB oldotta ki a legtöbb szerves anyagot, a HPBCD a legkevesebbet. A 0,1% SDS-oldat spektruma a kettő között halad.

12. ábra Agyagtalajjal egyensúlyba hozott CD- és SDS-oldatok spektrumai

4. Összefoglalás

Vizsgálataink során a következő tapasztalatokat szereztük:

- 1. A CDk adszorpciója a különböző talajokon nem hozható egyértelmű összefüggésbe a talajok fajlagos felületével, mutatva, hogy a fizikai adszorpció mellett más folyamatok pl. komplexképzés a talajalkotókkal játszhatnak szerepet.
- 2. A szubsztituálatlan CDk jobban kötődnek a talajokhoz, mint a vizsgált CD származékok. A HPBCD adszorbeálódik a legkevésbé mindhárom talajon.
- 3. A CDket kb. egy nagyságrenddel kevésbé kötik meg a talajok, mint az összehasonlításul vizsgált tenzidet (SDS).
- 4. A CDk kioldják a nem szennyezett talajok szerves anyagait, különösen a vályogtalajból. Ez a megfigyelés összhangban van azzal a korábbi megfigyeléssel, hogy a CDk nem szennyezett talajokban is elősegítik a mikróbák szaporodását azáltal, hogy javítják a mikróbák tápanyagainak biológiai hozzáférhetőségét.
- 5. A RAMEB és a HPBCD oldóképessége között csak az agyagtalaj esetén láttunk jelentős különbséget az irodalmi adatokkal egyezően a RAMEB javára. A RAMEB és a BCD oldóképessége azonban nem tért el jelentősen egyik talaj esetében sem, ami felveti azt a gondolatot, hogy ennek a jelentősen olcsóbb CD-féleségnek is lehet előnyös hatása a talajok bioremediációjában.
- 6. A CDk oldóképessége jóval kisebb, mint az SDS-é.

Irodalom

1. Fenyvesi, E.; Szeman, J.; Szejtli, J.: J. Inclusion Phenom. Mol. Recognit. Chem. 1996, 25, 229-232

2. Gruiz, K.; Fenyvesi, E.; Kriston, E.; Molnar, M.; Horvath, B.: J. Inclusion Phenom. Mol. Recognit. Chem. 1996, 25, 233-236

3. Fava, F.; Di Gioia, D.; Marchetti, L.: Biotechnol. Bioeng. 1998, 58, 345-355

4. Molnár, M., Fenyvesi, É., Gruiz, K., Leitgib, L., Balogh, G., Murányi, A., Szejtli, J.: J. Inclusion Phenomena Mol. Recognit. Chem., in press

5. Molnár, M.; Fenyvesi, É.; Gruiz, K.; Szejtli, J.: Proc. Int. Symp. Cyclodextrins, 9th Meeting Date 1998, Ed. Torres Labandeira, J.J., Vila-Jato, J.L., **1999**, pp. 599-602

6. Boving, T. B.; Wang, X.; Brusseau, M. L.: J. Environ. Sci. Technol. 1999, 33, 764-770

7. Boving, T. B.; Brusseau, M. L.: J. Contam. Hydrol. 2000, 42, 51-67

8. Sheremata, T. W.; Hawari, J. Environ. Sci. Technol. 2000, 34, 3462-3468

9. Ko, S.-O.; Schlautman, M. A.; Carraway, E. R.: Environ. Sci. Technol. **1999**, *33*, 2765-2770